Assessment of Pollution and Pedestrian Comfort at Tecsup using Field Measurements and Numerical Modeling with ENVI-met

Authors

  • Daniel Horna Muñoz Universidad de Ingeniería y Tecnología Author
  • Lourdes Diaz Espinoza Universidad de Ingeniería y Tecnología Author

DOI:

https://doi.org/10.71701/jy9kmg53

Keywords:

Air pollution, PM₂.₅, PM₁₀, thermal comfort, PMV, PET, numerical modeling, ENVI-met, pollutant dispersion, vehicular traffic, urban heat island, green infrastructure

Abstract

This study evaluates air quality and thermal comfort on the Tecsup campus using numerical modeling in ENVI-met, with the aim of identifying critical areas and proposing improvement measures. Air pollutants (SO₂, NO, O₃, and PM₂.₅) and thermal conditions were analyzed using the Predicted Mean Vote (PMV) and Physiological Equivalent Temperature (PET) indices, which allow the evaluation of pedestrian thermal perception by considering variables such as temperature, humidity, radiation, and wind.

The results showed that PM₁₀ and PM₂.₅ concentrations exceeded the daily limits established by the Environmental Quality Standards (ECA), with maximum recorded values of 200 μg/m³ and 126.59 μg/m³, respectively, compared to the limits of 100 μg/m³ and 50 μg/m³. In contrast, O₃ (55 μg/m³) and CO (2,500 μg/m³) concentrations remained within the established regulatory values. Wind speeds varied between 0.14 m/s and 1.30 m/s, influencing the dispersion of pollutants, especially on Huarochirí and Cascanueces avenues, where the highest levels were recorded due to vehicular traffic. In terms of thermal comfort, PMV values ranged between 1.47 and 2.48, and PET values between 36°C and 56°C, demonstrating moderate to severe thermal stress across much of the campus, with comfort zones found only under vegetation cover.

The study concludes that the incorporation of additional vegetation and shading structures, along with reorganizing vehicular flow, would reduce both pollutant concentrations and perceived temperatures, thereby improving the campus's environmental quality.

Downloads

Download data is not yet available.

Author Biographies

  • Daniel Horna Muñoz, Universidad de Ingeniería y Tecnología

    Daniel Vicente Horna Muñoz (1988, Lima, Perú) es el director del departamento de Ingeniería Civil y Ambiental de la Universidad de Ingeniería y Tecnología (UTEC). Obtuvo su PhD de la Universidad de Iowa y MSc de Stanford University, ambos en ingeniería civil. Ha desarrollado investigaciones sobre la dinámica de fluidos computacional aplicada a fluidos ambientales en temas relacionados con contaminación ambiental, inundaciones y contaminación atmosférica.

  • Lourdes Diaz Espinoza, Universidad de Ingeniería y Tecnología

    Lourdes Diaz Espinoza (2002, Lima, Perú) es estudiante de Ingeniería Ambiental en la Universidad de Ingeniería y Tecnología (UTEC). Actualmente, cursa el noveno ciclo de su carrera. Posee formación en gestión ambiental, normativa ambiental y evaluación de impactos, con experiencia en monitoreo de componentes físicos y biológicos. Ha desarrollado investigaciones sobre calidad del aire, gestión ambiental y sostenibilidad, áreas en las que busca generar un impacto positivo a través de soluciones prácticas e innovadoras.

References

[1] Chatzinikolaou, E., Chalkias, C., & Dimopoulou, E. (2018). Urban microclimate improvement using ENVI-met climate model. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII–4, 69–76. https://doi.org/10.5194/isprs-archives-XLII-4-69-2018

[2] Fernández, R., Allende, D. G., Castro, F., Cremades, P., & Puliafito, S. E. (2010). Modelado regional de la calidad de aire utilizando el modelo WRF/Chem: Implementación de datos globales y locales para Mendoza. Avances en Energías Renovables y Medio Ambiente, 14, 43–50. Asociación Argentina de Energías Renovables y Medio Ambiente (ASADES). ISSN 0329-5184.

[3] Ouyang, W., Sinsel, T., Simon, H., Morakinyo, T., Liu, H., & Ng, E. (2021). Evaluating the thermal-radiative performance of ENVI-met model for green infrastructure typologies: Experience from a subtropical climate. Building and Environment, 207, 108427. https://doi.org/10.1016/j.buildenv.2021.108427

[4] Pérez-Vega, C., Ramírez-Arias, J. A., López-Cruz, I. L., Arteaga-Ramírez, R., & Cervantes-Osornio, R. (2021). 3D computational fluid dynamics modeling of temperature and humidity in a humidified greenhouse. Revista Ingeniería Agrícola y Biosistemas, 13(1). https://doi.org/10.5154/r.inagbi.2020.10.060

[5] Pinedo-Jáuregui, E., Gamarra, D., & Quispe, L. J. (2020). Análisis del control de emisiones atmosféricas vehiculares en Lima Metropolitana. South Sustainability, 1(1), 11–22. https://doi.org/10.21142/SS-0101-2020-005

[6] Schalau, S., Habib, A., & Michel, S. (2021). Atmospheric wind field modelling with OpenFOAM for near-ground gas dispersion. Atmosphere, 12(8), 933. https://doi.org/10.3390/atmos12080933

[7] Schneider, M., Tötzer, T., Bügelmayer-Blaschek, M., & Berg, R. (2023). Pitfalls and potentials of microclimate simulations in urban planning. Journal of Urban Planning and Development, 149(4), 04023002. https://doi.org/10.1061/JUPDDM.UPENG-450

[8] Senamhi. (2014). Informe de calidad del aire en Lima Metropolitana. https://www.senamhi.gob.pe/load/file/03201SENA-141.pdf

[9] Zhao, M., Vicedo-Cabrera, A. M., Guo, Y., Tong, S., Coelho, M., Saldiva, P., & others. (2023). Joint effect of heat and air pollution on mortality in 620 cities of 36 countries. Environment International, 181, 108258. https://doi.org/10.1016/j.envint.2023.108258

Portada - Artículo 07

Downloads

Published

2025-12-23

Issue

Section

Artículos

How to Cite

Assessment of Pollution and Pedestrian Comfort at Tecsup using Field Measurements and Numerical Modeling with ENVI-met. (2025). Revista I+i, 19, 87-100. https://doi.org/10.71701/jy9kmg53