Design and Implementation of a Hexapod Explorer Robot for Taking Images in Growing Areas

Authors

  • José Machuca Mines National University of Engineering image/svg+xml Author
  • Juan Carlos Suárez Quispe National University of Engineering image/svg+xml Author
  • Ernesto Juan Godinez de la Cruz National University of Engineering image/svg+xml Author
  • Wilson Marín Quevedo National University of Engineering image/svg+xml Author

DOI:

https://doi.org/10.71701/cs8paw06

Keywords:

Mobile robot, explorer robot, hexapod, unmanned vehicle, 3D printing

Abstract

In this paper it was shown the development of a hexapod explorer robot designed to operate within growing areas and with the capability to capture visual information from the operating area through a digital camera integrated into it. The article begins by making a brief analysis about the characteristics of the several classes of mobile robots to point out the reasons that motivated the development of the hexapod robot exposed in the present work, such as its greater ability to perform over irregular areas and the possibility of not to risking a human operator within danger zones. Subsequently, the design of the proposed robot had shown, which had based on information extracted from various researches, information that was essential for the establishment of the mechanical, electronic, and motion control characteristics of the robot. The design of the mechanical structure had carried out based on the use of computer-aided software (CAD), while its manufacture had made by 3D printing. The paper goes on to show the assembly of the robot and its operational tests. These tests had carried out at the beginning in a room and then carried out in open fields and grassland, allowing to corroborate the satisfactory performance of the robot. The article ends by showing the results obtained from the tests carried out, making the corresponding observations, and exhibiting the conclusions obtained from the entire work.

Downloads

Download data is not yet available.

References

Pollard, B. y Tallapragada, P. (abril 2017). An aquatic robot propelled by an internal robot. IEEE/ASME Transactions on Mechatronics 22(2).

Kuppuswamy, N., Cho, S., Stomier, D., Choi, S. y Kim, J. Design of an omnidirectional robot for FIRA Robosot. Recuperado de: https://www.researchgate.net/publication/264841048_DESIGN_OF_AN_OMNIDIRECTIONAL_ROBOT_FOR_FIRA_ROBOSOT.

Wang, Q., Wu, L., Chen, S., Shu, D., Xu, Z., Li, F. y Wang, R. (mayo 2014). Evaluation of 3D geometry for low-attitude UAV images: a case study at Zijin mine. The International Archives of the Photogrammetry - Remote Sensing and Spatial Information Sciences - ISPRS Technical Commission IV Symposium, XL-4, 297-300.

Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K. y Hirukawa, H. (septiembre 2003). Biped walking pattern generation by using preview control of zero- moment point. Proceedings of the 2003 IEEE International Conference on Robotics & Automation, 1620-1626.

Hirose, S., Fukuda, Y., Yoneda, K., Nagakubo, A., Tsukagoshi, H., Arikawa, K., Endo, G., Doi, T. y Hodoshima, R. (junio 2009). Deking, analysis, and gait control methods. IEEE Robotics & Automation Magazine, 104-114.

Best, G., Moghadam, P., Kottege, N. y Kleeman, L. (diciembre 2013). Terrain classification using a hexapod robot. Proceedings of Australasian Conference on Robotics and Automation. Universidad de Nueva Gales del Sur, Sídney, Australia.

Feng, S., Xinjilefu, X., Atkeson, C. y Kim, J. (julio 2015). Optimization based controller design and implementation for the atlas robot in the DARPA robotics challenge finals. International Conference on Humanoid Robots.

Vargas, J. (octubre 2016). Diseño de un robot hexápodo tipo hormiga. 8. o Congreso Mexicano de Robótica, COMRob 2006. Torre de Ingeniería, Universidad Nacional Autónoma de México, Ciudad de México, 80-85.

Belter, D. y Skrzypczynsky, P. (septiembre 2011). Integrated motion planning for a hexapod robot walking on rough terrain. Preprints of the 18th IFAC World Congress, 6918-6923. Milán, Italia.

Mostafa, K., Tsai, C. y Her, I. (2010). Alternative gaits for multiped robots with leg failures to retain maneuverability. International Journal of Advanced Robotics Systems, 7(4), 33-40.

Gonzales, P., García, E., Ponticelli, R. y Armada, M. (diciembre 2008). Minimizing energy consumption in hexapod robots. Advanced Robotics 23, 681-704. https://doi.org/10.1163/156855309X431677.

Carbone, G., Yatsuna, A., Ceccarelli, M. y Yatsun, S. (julio 2009). Design and simulation of Cassino Hexapod robot. Proceedings of the 13th WSEAS International Conference on Systems, 301-307.

Jakinovsky, B. y Maehle, E. (marzo 2010). In situ self- reconfiguration of hexapod robot OSCAR using biologically inspired approaches. Climbing and Walking Robots, 311-332.

Saranli, U., Buehler, M. y Koditschek, D. (julio 2001). RHex: a simple and highly mobile hexapod robot. The International Journal of Robotics Research, 20(7), 616-631.

Preumont, A., Alexandre, P., Doroftei, I. y Goffin, F. (1997). A conceptual walking vehicle for planetary exploration. Mechatronics, 7(3), 287-296.

William, A., Lewinger, H., Reekie, M. y Webb, B. (2011). A hexapod robot modeled on the stick insect, Carausius morosus. 15th International Conference on Advanced Robotics (ICAR). https://doi.org/10.1109/ICAR.2011.6088569.

Ohnishi, T. y Asakura, T. (septiembre-octubre 2004). On walking behavior strategy for spider-robot based on environmental information. Proceedings of 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems. Sendai, Miyagi, Japón.

Ramesh, A. y Kumar, C. (2010). Autonomous home automated hexapod robot. International Journal on Computer Science and Engineering, 2(9), 3016-3020.

Anđelković, S., Veličković, I., Rašić, M. y Đorđević , G. (2003). Digital compass as heading sensor for hexapod robot. Journal of Automatic Control, 13(2), 11-16.

Agheli, M., Faal, S., Chen, F., Gong, H. y Onal, C. (mayo- junio 2014). Design and manufacturing of a foldable

hexapod robot towards experimental swarm applications. IEEE International Conference on Robotics and Automation (ICRA). https://doi.org/10.1109/ICRA.2014.6907287.

Farooq, U., Asad, M., Amar, M., Hanif, A. y Saleh, S. (abril 2014). Fuzzy logic based real time obstacle avoidance

controller for simplified model of hexapod walking robot. International Journal of Computer and Electrical Engineering, 6(2), 127-131.

Arduino.cc. (abril 2019). Arduino Mega 2560 REV3. Recuperado de: https://store.arduino.cc/usa/mega-2560-r3.

Arduino.cc. (abril 2019). Arduino Due. Recuperado de: https://store.arduino.cc/usa/due.

GoPro. (septiembre 2019). Hero 7 Black. Recuperado de: https://gopro.com/en/pe/shop/cameras/hero7-black/CHDHX-701-master.html.

Maker Pro. (septiembre 2019). HC-05 Datasheet | Bluetooth Transceiver Module. Recuperado de: https://maker.pro/custom/tutorial/hc-05-bluetooth-transceiver-module-datasheet-highlights.

Downloads

Published

2024-10-11

Issue

Section

Artículos

How to Cite

Design and Implementation of a Hexapod Explorer Robot for Taking Images in Growing Areas. (2024). Revista I+i, 15. https://doi.org/10.71701/cs8paw06

Most read articles by the same author(s)