Active Filters in Medium Voltage as an Alternative to the Use of SVC for the Improvement of Energy Quality in Steel Plants
DOI:
https://doi.org/10.71701/tby1e946Keywords:
SVC (static var compensator), active filters, arc furnaces, flicker, harmonicsAbstract
Steel plants need to have metal melting equipment that use high electrical current (arc furnaces). When generating consecutive short circuits to melt the metal, arc furnaces make other production areas such as rolling mills, oxygen mills, steel mills, iron shafts and docks have energy quality-related issues. Among the problems that may arise during melting and refining processes are phase imbalance, voltage fluctuations, flickering, transients and harmonics. In this type of plant production processes demand to balance the power factor between the main bus bar and every sub-plant. Among the common solutions are reactive power compensation and passive filtering in medium voltage, being the flicker control a major inconvenience when operating arc furnaces. With the development of power electronics, SVC (Static Var Compensator) has been implemented in many steel plants. While this solution is effective, it is expensive and takes up space to get installed. This article proposes an alternative to flicker reduction and reactive compensation that can be implemented in steel plants with the use of active filters in medium voltage. The data of energy quality measurements and electrical parameters of a steel plant in Peru were processed for 120 days. The information was collected from an energy management and monitoring system and network analyzers. The electrical system was modeled in the ETAP software, the SVC was measured and active filters in medium voltage were used under proper comparative analysis. Active filters in medium voltage are technically and economically efficient to use in steel plants.
Downloads
References
Ponce Trillo, Y. (2010). Reducción de perturbaciones en la red eléctrica de una planta Siderúrgica con Horno Eléctrico de arco a través de la instalación de un SVC [Informe de suficiencia para optar el título de ingeniero, Universidad Nacional de Ingeniería].
Illanes Chacón, E. (2014). Compensación reactiva en hornos de arco eléctrico mediante el uso de SVC Light [Informe de suficiencia para optar el título de ingeniero, Universidad Nacional de Ingeniería].
Sullivan, D. (2006). Improvements in Voltage Control and Dynamic Performance of Power Transmission Systems Using Static VAR Compensators (SVC) [Tesis de maestría, Universidad de Pittsburgh].
Deryuzhkova, N., Solovyev, V., y Kupova, A. (2019). Intelligent Control System for Static Var Compensator of Arc Furnace [Conferencia]. 2019 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon), Vladivostok, Rusia.
Deaconu, S., Topor, M., Popa, G., Popa, I. (2009). Comprehensive Analysis for Modernization of 100 t Electric Arc Furnace for Steel Production [Conferencia]. 2009 IEEE Industry Applications Society Annual Meeting, Houston, Texas, Estados Unidos.
Jagiela, K. Gala, M., Kopinski, M. y Rak, J. (2018). Influence of Harmonic Filters on the Operation of AC Arc Furnace Power Installation [Conferencia]. 2018 Conference on Electrotechnology: Processes, Models, Control and Computer Science (EPMCCS), Kielce.
Akagi, H., Kanazawa, Y., y Nabae, A. (1983). Generalized theory of the Instantaneous reactive power in three- phase circuits. En Proc. Int. Power Electronics Conf., 1983 (pp. 1375-1386).
Watanabe, E., y Aredes, M. (1995). New control algorithms for series and shunt three-phase four- wire active power filters. IEEE Transactions on Power delivery, 10(3), 1649-1656.
Akagi, H., Kanazawa, Y., y Nabae, A. (1984). Instantaneous reactive power compensators comprising switching devices without energy storage components. IEEE Transactions on industry applications, (3), 625-630.
Dolezal, J., Castillo, A. G., Tlusty, J., y Valouch, V. (diciembre de 2000). Topologies and control of active filters for flicker compensation. En ISIE’2000. Proceedings of the 2000 IEEE International Symposium on Industrial Electronics, (1), (pp. 90-95). IEEE.
Takeda, M., Ikeda, K., Teramoto, A., & Aritsuka, T. (1988, April). Harmonic current and reactive power compensation with an active filter. En PESC’88 16 ÍNDICE VOLUMEN 16, 2022 Record., 19th Annual IEEE Power Electronics Specialists Conference (pp. 1174-1179). IEEE.
Kojima, H., Matsui, K. y Tsuboi, K. (2004). Static Var compensator having active filter function for lower order harmonics. 30th Annual Conference of IEEE Industrial Electronics Society. IECON 2004, Busan, Corea del Sur.
Wang, L., Lao, K., Lam, C., y Wong, M. (2017). Delta-connected static var compensator (SVC) based hybrid active power filter (SVC-HAPF) and its control method [Conferencia]. IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing.
Mohan Mathur, y R. Varma, R. (2002). Thyristor-Based FACTS Controllers for Electrical Transmission Systems. IEEE Press and Wiley & Sons, Inc.
Miller, T. (1982). Reactive Power Control In Electrical Systems. Wiley & Sons, Inc.
Hingorani, N., y Gyugyi, L. (1999). Understanding FACTS: Concepts and Technology of Flexible AC Transmission Systems. Willey – IEEE Press.
IEEE 1453 -2015. Recommended Practice for the Analysis of Fluctuating Installations on Power Systems.
IEC 61000-3-7-2008. Limits - Assessment of emission limits for the connection of fluctuating installations to MV, HV and EHV power systems.
Peña Huaringa, O. (2007). Estudio y simulación de los filtros pasivos, activos e híbridos de potencia, para el mejoramiento de la calidad de energía. En Simposio Internacional sobre la Calidad de la Energía Eléctrica - SICEL, 4. https://revistas.unal.edu.co/index.php/SICEL/article/view/694
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.