Optimization of Vehicles Fuel Efficiency through Route’s Digital Management
DOI:
https://doi.org/10.71701/5031k244Keywords:
Vehicular congestion, fuel consumption, fuel efficiency, additional trip time, traffic, journey, average speed, travelAbstract
The purpose of this article is to determine the impact on the proper use of vehicular traffic applications, to reduce fuel consumption, due to the relationship between its performance and traffic level on a given route, which affects the travel average speed. In this study, it has been determined that for higher average speed in the travel of the vehicle, there will be a greater performance of gasoline, diesel or other automotive fuels, and therefore, lower consumption of these. This study was made using traffic data in Lima city, which has the highest traffic density in Peru. For this, it was used an experimental methodology; fuel efficiency was established as a dependent variable, determining that there is an inverse relationship between this and the accumulated time, which occurs in vehicles stopped due to dense traffic or excessive traffic lights. It has been concluded that there is a direct impact of traffic level with higher fuel consumption of vehicles. It was established that every minute of traffic delay represents the reduction of fuel efficiency by 66 meters of travel per liter of consumed fuel; this is by taking as a reference a period in which traffic level on a given route is the lowest registered. It is important to highlight that use of applications that allow selecting and using routes with lower traffic density, generates vehicle operations with lower fuel consumption costs, which has an impact on the lower wear of engines, as well as on lower emission of pollutants gases whose reduction is set at 13 %.
Downloads
References
[1] Aceña, M. (2016). Gestión y control de flotas y servicios
de transporte por carretera. Madrid: Publicep.
[2] Baptista, P., Fernández, C., & Hernández, R. (2008).
Metodología de la investigación. México D.F.: Ultra.
[3] Campos, J., De Rus, G., & Nombela, G. (2003). Economía
del transporte. Barcelona: Antoni Bosch.
[4] Correa, A., Cogollo, J., & Salazar, J. (2010). Evaluación
del efecto de la conducción eficiente en el consumo de
combustible en vehículos de transporte de carga pesada
usando diseño de experimentos. Producción + Limpia
[en línea], (5), 95-104. Recuperado de http://www.scielo.
org.co/scielo.php?script=sci_abstract&pid=S1909-
04552010000100007&lng=e&nrm=iso
[5] Fundación Transitemos (2013). Propuesta de Hoja de
Ruta para una Movilidad y Transporte Sostenible en Lima
y Callao al 2025. Hacia una ciudad para las personas.
Recuperado de https://transitemos.org/wp-content/
uploads/2017/09/Hacia-Una-Ciudad-para-las-PersonasHoja-de-Ruta-al-2025-V-Final1.pdf
[6] González, R. (2005). Los ciclos de manejo, una
herramienta útil si es dinámica para evaluar el consumo
de combustible y las emisiones contaminantes del auto
transporte. Ingeniería Investigación y Tecnología [en línea],
(6), 147-162. Recuperado de http://dx.doi.org/10.22201/
fi.25940732e.2005.06n3.011
[7] Heinz, K., & Klingebiel, M. (2005). Manual de la técnica
del automóvil. Stuttgart: Bosch.
[8] Morales, H. (2006). Ingeniería vial I. Santo Domingo:
Búho.
[9] Pedraza, L., Hernández, C., & López, D. (2012). Control
de tráfico vehicular usando ANFIS. Ingeniare [en línea],
(20), 79-88. Recuperado de https://www.ingeniare.cl/
index.php?option=com_ingeniare&view=d&doc=73/
art08.pdf&aid=306&vid=73&lang=es
[9] Posada, J., & González, C. (2013). Consumo
de combustible en vehículos para transporte
por carretera –modelos predictivos–. Revista
Ingenierías Universidad de Medellín [en línea], (12),
35-46. Recuperado de https://doi.org/10.22395/
rium.v12n23a3
[10] Rafael, M., & Cervantes, J. (2004). La selección
del tren motriz basada en la eficiencia energética
para vehículos de servicio pesado. Ingeniería
Investigación y Tecnología [en línea], (5), 49-
58. Recuperado de http://dx.doi.org/10.22201/
fi.25940732e.2004.05n1.004
[11] Toro, E., Franco, J., & Gallego, R. (2016). Modelo
matemático para resolver el problema de
localización y ruteo con restricciones de capacidad
considerando flota propia y subcontratada.
Ingeniería Investigación y Tecnología [en línea], (17),
357-369. Recuperado de https://doi.org/10.1016/j.
riit.2016.07.006
[12] Weiers, R. (2006). Introducción a la Estadística para
Negocios. México D.F.: Thomson.
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.