Study on Ampacity of Underground Cables in Medium Voltage Electrical Networks and Proposal for Enhancement

Authors

DOI:

https://doi.org/10.71701/revistaii.v.18.2024.92

Keywords:

Ampacity, medium voltage cables, underground networks

Abstract

AmpacidadThis article presents an analysis of the factors influencing the load capacity of underground cables in medium voltage networks. It discusses the considerations and results of capacity calculations, comparing the IEC 287 and IEC 853 standards with modeling and simulation using Cymcap software. The study considers the types of cables, load conditions, and the rated capacities of an electricity distribution company in Peru, explaining the results and proposing a modification to the installation method of single-core cables to increase transmission capacity.

Downloads

Download data is not yet available.

Author Biographies

  • Oscar Julian Peña Huaringa , National University of Engineering

    Doctor en Ciencias con Mención en Energética por la Universidad Nacional de Ingeniería (UNI). Máster en Gestión de las Energías Renovables por la Universidad de Barcelona (Uniba). Maestro en Ciencias con Mención en Sistemas de Potencia, por la Universidad Nacional de Ingeniería (UNI). Ingeniero electricista por la Universidad Nacional de Ingeniería (UNI). Docente en la Maestría en Ciencias de la Ingeniería Eléctrica en la Universidad Nacional San Agustín de Arequipa (UNSA), del diploma de Especialización en Protección de Sistemas Eléctricos de ESAN y del programa de premaestría en Sistemas de Potencia de la Universidad Nacional de Ingeniería. Actualmente es gerente de la empresa Power & Technology Systems (PTSYS).

  • Walter Francisco Estrada Lopez, National University of Engineering

    Doctor en Ciencias con especialidad en Física por la Universidad Nacional de Ingeniería (UNI). Profesor principal con actividad docente e investigador en la Universidad Nacional de Ingeniería. M.Sc. Ciencias con especialidad en Ciencias de los Materiales por la Universidad Nacional de Ingeniería (UNI). Especialista e investigador en estructura de materiales y microscopía electrónica.

References

Anders, G. (2005). Rating of Electric Power Cables in Unfavorable Thermal Environment. Wiley-IEEE Press.

Bates, C., Malmedal, K. & Cain, D. (2015). Cable ampacity calculations: A comparison of methods. IEEE Rural Electric Power Conference, 81-87. https://doi.org/10.1109/REPC.2015.13

Cardenas, D. (2020). Thermal-conductive model algorithm for the accurate calculation of temperatures in electrical power conductor. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería.

Exizidis, L., Chatziathanasiou, V. & Hennuy, B. (2014). Thermal analysis of underground cable crossings at various crossing angles. 9th Mediterranean Conference on Power Generation, Transmission, Distribution and Energy Conversion, marzo.

Gouda, O., El Dein, A. & Amer, G. (2011). Effect of the formation of the dry zone around underground power cables on their ratings. IEEE Transactions on Power Delivery, 26(2), 972-978. https://doi.org/10.1109/TPWRD.2010.2060369

Hechavarría, R., et al. (2017). Cálculo numérico de las propiedades térmicas efectivas de un compuesto por elementos finitos. Ingenius, (18), 14-20.

IEC 60287 (2022). Electric cables - Calculation of the current rating.

IEC 60853 (2002). Calculation of the cyclic and emergency current rating of cables.

Jaramillo-Vacio, R. (2018). Determinación de capacidad de conducción en líneas subterráneas: Estudio de sensibilidad paramétrica. IEEE - RVP AI Reunión de Verano de Potencia, julio.

Karahan, M., Varol, H. & Kalenderli, O. (2009). Thermal analysis of power cables using finite element method and current carrying capacity evaluation. International Journal of Engineering Education, 1158-1165.

Maderey, L. & Jiménez, A. (2005). Principio de hidrogeografía, estudios del ciclo hidrológico. Universidad Autónoma de México. www.diplomado-sig.igeograf.unam.mx/instituto/publicaciones/libros/hidrogeografia/

Madrigal, M. (2003). Análisis armónico en sistemas de potencia. México: Instituto tecnológico de Morelia.

Newton, G. (2000). Understanding the Neher-McGrath calculation and the ampacity of conductors.

Puy, A. (2005). Influencia de la temperatura en el límite líquido para suelos con diferentes índices de plasticidad. Universidad Politécnica de Catalunya. http://upcommons.upc.edu/pfc/bitstream/2099.1/3282/5/53973-5.pdf

Rasoulpoor, M., Mirzaie, M. & Mirimani, S. M. (2016). Electrical and thermal analysis of single conductor power cable considering the lead sheath effect based on finite element method. Iranian Journal of Electrical & Electronic Engineering, 12(1).

Rerak, M. & Ocłoń, P. (2017). The effect of soil and cable backfill thermal conductivity on the temperature distribution in underground cable system. 4th Scientific and Technical Conference on Modern Technologies and Energy System, 13, February.

Rubio, C. (2016). La relación entre resistividad térmica, humedad y un suelo arenoso pedregoso. Spanish Journal of Soil Science: SJSS, 6(2), 123-132.

Wang, P. et al. (2019). Dynamic thermal analysis of high-voltage power cable insulation for cable dynamic thermal rating. IEEE Access, 7, 56095-56106. https://doi.org/10.1109/ACCESS.2019.2913704

Downloads

Published

2024-12-27

Issue

Section

Artículos

How to Cite

Study on Ampacity of Underground Cables in Medium Voltage Electrical Networks and Proposal for Enhancement . (2024). Revista I+i, 18, 114-127. https://doi.org/10.71701/revistaii.v.18.2024.92