The Game Theory and The Nash Equilibrium on Higher Education

Authors

  • Luis Miguel Salas Hidalgo European Society of Anaesthesiology image/svg+xml Author

DOI:

https://doi.org/10.71701/rmeh7122

Keywords:

Nash Equilibrium, Games Theory, Higher Education, Repetitive Games

Abstract

The main objective of this study is to set out an alternative, amongst few analysis proposals, so that higher education institutions could contribute to development of both the society and itself, using as methodology the Game Theory and Nash Equilibrium as methodology. In a context of higher education institution’s most important internal “players” working together, this could be seen by the society as one single entity or “player”, that together with the other player, the society itself, would be analyzed under the “Minimax” principle (maximize benefits and minimize losses).

The results allow to:

1. Identify the higher education institution’s players: Consider administrative staff, students, teachers and the institution itself as players with individual goals but because their long-term work relationships they must form alliances and cooperate one another. That is to say, to be able to see the institution as one player.

2. Analyze the higher education institution as a single entity facing the society, in a service-to scenario. The research shows how to deal with an internal competitive scenario between players that work together in an education institution functioning as a whole facing the society, and how to apply the Nash Equilibrium on these analyzes.

Downloads

Download data is not yet available.

References

Anderson, R.; Sweeney, J. & Williams, A. (2010). Métodos cuantitativos para los negocios. México DF.: Cengage Learning.

Deulofeu, J. (2010). Prisioneros con dilemas y estrategias dominantes - Teoría de juegos. Navarra, España: Rodesa.

Antequera, T. & Espinel, C. (2010). “Decisiones estratégicas y de cooperación desde las matemáticas”. España. Rodesa.

Luis Daniel Muñoz Ramos, (2008). Algunos comentarios sobre la teoría de juegos y la teoría de puntos fijos, vistos desde el punto de vista de la teoría de las correspondencias. Tesis: Titulo profesional de licenciado en matemáticas. Universidad Nacional de Ingeniería. Lima. Perú.

Aumann, R. (1981). “Survey of Repeated games”. In Essay in Game Theory and Mathematical Economics in Honor of Oskar Morgenstern (pp.11-42). Bibliographisches Institut Mannheim, Wein, Zurich.

Rama, C. (2012). “El negocio universitario ‘for profit’ en América Latina”. Recuperado de http://www.scielo.org.mx/scielo.php?pid=S0185-27602012000400003&script=sci_arttext#nota.

Schelling, T. (1984). Choice and Consequence. Perspectives of an errant Economist.Cambridge, Harvard University Press.

Downloads

Published

2024-10-03

Issue

Section

Artículos

How to Cite

The Game Theory and The Nash Equilibrium on Higher Education. (2024). Revista I+i, 9. https://doi.org/10.71701/rmeh7122