Multivariate Graphic Representation of the Monitoring of the Execution of Investment Projects in Peru, 2021

Authors

  • José Luis Espinoza Melgarejo National University of San Marcos image/svg+xml Author

DOI:

https://doi.org/10.71701/hqgx4612

Keywords:

Multivariate charts, Investment projects, descriptive analysis, Rstudio, clustering

Abstract

The main objective of this work is to show the different proposals of multivariate graphs in the monitoring of investment projects such as box and whisker plots, stem and box plots, scatter plots, dendrogram, Chernoff faces, Andrews curves, graphs of star and radar charts. This study is justified because there is not much dissemination of this type of graphics, and neither all statistical software allows to implement them RStudio is an exception. It is an exploratory study with a non-experimental, cross-sectional, and descriptive design. The population was made up of 23 departments of Peru together with the Constitutional Province of Callao. Since the information for the department of Tumbes turned out to be incomplete, it had decided to eliminate it. Therefore, the final sample consisted of 23 observations and 07 variables with information on monitoring the execution of investment projects in Peru in the year 2021. Multivariate analysis graphical techniques had used using the RStudio integrated development environment for their prosecution. The results show various trends, clusters, and descriptive analysis of the 23 observations of the sample regarding the monitoring of execution in investment projects through the different multivariate graphs. We can conclude that through these graphs it was possible to identify similarities between the study units as well as groupings and atypical values (outliers). In addition, it is possible to describe how was the execution of investment projects in each of the departments and the province of Callao that are part of the sample.

Downloads

Download data is not yet available.

References

Actis di Pasquale, E., & Balsa, J. (2017). Revista de métodos cuantitativos para la economía y la empresa, 23, 164-193.

Balzarini, M., Bruno, C., Córdoba, M., & Teich, I. (2015). Herramientas en el análisis estadístico multivariado. Córdoba: Universidad Nacional de Córdoba.

Carmona, F. (2018). Un análisis con R. Datos multivariantes. Departament d’Estadística.

Correa, J., & Gónzalez, N. (2002). Gráficos estadísticos con R. Recuperado el 20 de junio de 2021, de https://cran.r-project.org/doc/contrib/grafi3.pdf

Curts G., J., Alcántara L., L., & Chiappa C., X. (1987). Introducción al análisis exploratorio de datos multidimensionales. Ciencias, 30-35.

Dagnino, J. (2014). Datos faltantes (missing values). Revista Chilena de Anestesiología, 43, 332-334.

Díaz Monroy, L. G., & Morales Rivera, M. A. (2012). Análisis estadístico de datos multivariados. Bogotá: Universidad

Nacional de Colombia.

Hernández, S. R., Fernández, C. C., & Baptista, L. P. (2014). Metodología de la investigación. México: McGraw- Hill Interamericana Editores.

INEI. (2009). Guía para representar datos estadísticos. Lima: Centro de Investigación y Desarrollo.

Jiménez, M. (2018). Clustering jerárquico en R. Obtenido de RPubs: https://rpubs.com/mjimcua/clustering-jerarquico-en-r

Malhotra, N. (2008). Investigación de mercados. México: Pearson Educación.

MEF. (2021). Transparencia económica. Recuperado el 8 de mayo de 2021, de https://apps5.mineco.gob.pe/bingos/seguimiento_pi/Navegador/default.aspx

Mostajo Guardia, R. (2002). El sistema presupuestario peruano. CEPAL.

Ocampo García, J., & Ospina Betancur, J. (2013). Análisis comparativo de colombia frente a los nueve países más desarrollados según el IEPG, mediante el análisis multivariado y los gráficos pictóricos. Journal of Engineering and Technology, 2(2), 8-20.

Peña, D. (2002). Análisis de datos multivariantes. Madrid: McGraw-Hill.

Rubio Donet, J. L. (2018). Detección de datos multivariados atípicos con series finitas de Fourier. Lima: Universidad Nacional Agraria La Molina.

Sánchez Pedraza, R. (2000). Análisis de los datos mediante herramientas gráficas. Revista de la Facultad de Medicina, 48(2), 104-110.

Schiattino, I., & Silva, C. (2013). Representación gráfica de información multivariante. Aplicación al sistema de salud de Chile. Revista Chilena de Salud Pública, 17(2), 117-123.

Tam Málaga, J., Vera, G., & Oliveros Ramos, R. (2008). Tipos, métodos y estrategias de investigación científica.

Pensamiento y acción, 5, 145-154.

Downloads

Published

2024-10-11

Issue

Section

Artículos

How to Cite

Multivariate Graphic Representation of the Monitoring of the Execution of Investment Projects in Peru, 2021. (2024). Revista I+i, 15. https://doi.org/10.71701/hqgx4612