Time series model to predict the demand for care of patients with chronic kidney disease, 2022

Authors

  • José Luis Espinoza Melgarejo National University of Engineering Author

DOI:

https://doi.org/10.71701/revistaii.v.18.2024.88

Keywords:

Patient demand, chronic kidney disease, time series, autoregressive forecasting, hyperparameter tuning, time series assumptions

Abstract

The main objective of this study is to forecast the demand for patients with chronic kidney disease in state-run healthcare facilities in Peru in 2022 using time series models, and to conduct a descriptive analysis of this demand. This study is justified as there are no similar studies in Peru, despite the known deficiencies in equipment and supplies for the treatment of kidney diseases through medical procedures such as dialysis. This is a descriptive and exploratory study; the design is non-experimental, cross-sectional and descriptive. The population consists of 1,064,744 patient records with various information, such as the care period, identification code, name of the healthcare facility, among others, taken from the Open Data Platform of Peru. No sampling was carried out because time series models were built at daily intervals. Statistical techniques such as simple and stacked bar graphs, pie charts and frequency tables were used; A recursive autoregressive forecasting time series model was built using Python through Jupyter Notebook for processing. The most important results show that the highest demand is concentrated in Lima, with a balanced distribution between men and women, and a higher incidence in people aged 50 to 70, especially among those with free insurance. Analyzing the components of the time series and using the Dicky-Fuller test, it was decided to use a recursive autoregressive forecasting model, obtaining an R2 of 96.62%. In addition, after performing a hyperparameter adjustment, an R2 of 94.61% was obtained for the same model, which was less over-adjusted and met most of the time series assumptions [3]. Therefore, we can conclude that the model obtained is good for predicting the demand for care of patients with chronic kidney disease since it has an optimal performance and meets all the assumptions except for autocorrelation.

Downloads

Download data is not yet available.

Author Biography

  • José Luis Espinoza Melgarejo, National University of Engineering

    Magíster en Docencia Universitaria e Investigación Pedagógica de la Universidad San Pedro de Chimbote (USP), Perú, y licenciado en Matemática de la Universidad Nacional de Ingeniería (UNI), Perú. Docente de educación superior con más de 10 años de experiencia laborando en instituciones como IDAT, Tecsup, la Universidad Privada del Norte (UPN), la Universidad Nacional Mayor de San Marcos (UNMSM) y la Universidad Tecnológica del Perú (UTP). Ha dictado diversos cursos en ciencia de datos, matemática, estadística, finanzas entre otros. Especialista en estadística y ciencia de datos que cuenta con estudios de posgrado en la UNMSM y, actualmente, es estudiante de doctorado en Estadística Matemática de la Universidad Nacional del Santa (UNS), Perú.

References

Amat, J. (2021a). Ciencia de datos con Python: Análisis de normalidad con Python. Ciencia de Datos. https://cienciadedatos.net/documentos/pystats06-analisis-normalidad-python

Amat, J. (2021b). Ciencia de datos con Python: Análisis de homocedasticidad y heterocedasticidad con Python. Ciencia de Datos. https://cienciadedatos.net/documentos/pystats07-test-homocedasticidad-heterocedasticidad-python

Amat, J. & Escobar, J. (2023). Skforecast: Forecasting series temporales con Python y Scikit-learn. Ciencia de Datos. https://cienciadedatos.net/documentos/py27-forecasting-series-temporales-python-scikitlearn.html

Arias-Gómez, J., Villasís-Keever, M. & Miranda, M. (2016). El protocolo de investigación III: La población de estudio. Alergia México, 63(4), 201-206.

Campó, S. (14 de marzo de 2024). En Perú más de 2,5 millones sufren de enfermedad renal crónica, según el Minsa: ¿Cómo cuidar la salud de los riñones? Infobae. https://www.infobae.com/peru/2024/03/14/en-peru-mas-de-25-millones-sufren-de-enfermedad-renal-cronica-segun-el-minsa-como-cuidar-la-salud-de-los-rinones/

Carrillo-Larco, R. & Berbané-Ortiz, A. (2018). Mortalidad por enfermedad renal crónica en el Perú: Tendencias nacionales 2003-2015. Revista Peruana de Medicina Experimental y Salud Pública, 35(3), 409-415.

Darío, L. & Martínez, S. (2007). Una metodología de series de tiempo para el área de la salud: Caso práctico. Facultad Nacional de Salud Pública, 25(2), 117-122.

Hernández, R., Fernández, C. & Baptista, M. (2014). Metodología de la investigación (6.ª ed.). McGraw-Hill Education.

Herrera-Añazco, P., Pacheco-Mendoza, J. & Taype-Rondán, A. (2016). La enfermedad renal crónica en el Perú: Una revisión narrativa de los artículos científicos publicados. Acta Médica Peruana, 33(2), 130-137.

Jilani, T. et al. (2019). Short and long term predictions of hospital emergency department attendances. International Journal of Medical Informatics, 129, 167-174.

Jin Kam, H., Ok, S. & Woong, P. (2010). Prediction of daily patient numbers for a regional emergency medical center using time series analysis. Healthcare Informatics Research, 16(3), 158-165.

Malhotra, N. (2008). Investigación de mercados (5.ª ed.). Pearson Educación.

Minitab. (2024). Comprobar si existe autocorrelación usando el estadístico de Durbin-Watson. Soporte de Minitab. https://support.minitab.com/es-mx/minitab/help-and-how-to/statistical-modeling/regression/supporting-topics/model-assumptions/test-for-autocorrelation-by-using-the-durbin-watson-statistic/#fntarg_1

Ministerio de Salud del Perú [Minsa]. (10 de marzo de 2022). Día Mundial del Riñón: El 11 % de la población del Perú padece una enfermedad renal crónica. Gobierno del Perú. https://www.gob.pe/institucion/minsa/noticias/589662-dia-mundial-del-rinon-el-11-de-la-poblacion-del-peru-padece-una-enfermedad-renal-cronica

Parra, R. (2012). Un modelo estructural de series de tiempo para la predicción de la demanda de atención médica en el sistema municipal de salud [Tesis de maestría, Escuela Superior Politécnica del Litoral]. Repositorio Institucional ESPOL.

Rosa-Jiménez, F., Montijano, A., Ília, C. & Zambrana, J. (2005). ¿Solicitan las mujeres más consultas al área médica? Anales de Medicina Interna, 22(11), 515-519.

Sen, J. & Chaudhuri, T. (2017). A time series analysis-based forecasting framework for the Indian healthcare sector. Journal of Insurance and Financial Management, 2(2), 15-34.

Tam, J., Vega, G. & Oliveros, R. (2008). Tipos, métodos y estrategias de investigación científica. Pensamiento y Acción, 14(1), 145-154.

Vásquez, S., Benavides, T. & Ruiz, S. (2023). Informe series de tiempo. RPubs. https://rpubs.com/sararuiz/seriesdetiempo

Villani, M. et al. (2017). Time series modelling to forecast emergency department presentations. BMC Health Services Research, 17(1), 1-9.

Zanabria-Calderón, J. (2022). Brecha oferta/demanda de prestaciones en el control de la enfermedad renal crónica en EsSalud. Cátedra Villarreal, 10(2), 86-97.

Downloads

Published

2024-12-27

Issue

Section

Artículos

How to Cite

Time series model to predict the demand for care of patients with chronic kidney disease, 2022. (2024). Revista I+i, 18, 58-70. https://doi.org/10.71701/revistaii.v.18.2024.88