Gender Pay Gap in the Peruvian Government: an approach from Data Science
DOI:
https://doi.org/10.71701/revistaii.v.18.2024.91Keywords:
Gender Pay Gap, female participation, Law of non-gender discrimination, Valuation of jobs, Cleaning and imputation of data, linear regression, clustering, profiles of pay gapAbstract
The objective of this study is to analyze the existence of the gender wage gap in the Peruvian government and identify the profiles of these gaps at the regional level, based on open data provided by the National Authority of the Civil Service (Servir), applying data science methodologies and techniques. The research was applied and quantitative in nature, explanatory in level, and used a non-experimental longitudinal design (2017-2021). The methodology used was CRISP-DM (Cross Industry Standard). During the Exploratory Data Analysis it was found that at the national level the female participation is closed to parity getting an average of 47 % on the other hand, the gender pay gap in the Government had a downward trend from 13 % (2017) to 11 % (2021), an indicator better than the general average for Latin America which was 14 % (2019 ILO), additionally, the correlation showed that to more participation correspond less pay gap, however, when the information is disaggregated by regions, heterogeneity of the gaps is evident (interquartile range for Apurimac of 25 % and Piura of 2 %) and its evolution; in many regions the pandemic generates that the improvements in the gap are reversed or slowed down. To determine which regions made progress, a simple linear regression model was used based on the year; the negative slope would indicate progress, and the positive slope would indicate reversals in the period under study; the regions that made the best progress were Moquegua, Huánuco and Ancash, while those that showed deterioration were Huancavelica, La Libertad and San Martin. To identify the gap profiles, the year 2021 was used and variables obtained from the INEI were added, such as GDP per capita and coverage per public servant, the first factor associated with the progress of the region and the second associated with government services, therefore two clusters were determined with median values of pay gap high (12,7 %) and low (8,9 %). The Brown-Mood nonparametric hypothesis test implies that the pay gap exists regardless of the labor laws that banning the discrimination of rewarding in the labor market.
Downloads
References
Aldas, J. & Uriel, E. (2017). Análisis multivariante aplicado con R. Paraninfo.
Autoridad Nacional del Servicio Civil (Servir). (30 de agosto de 2023). Plataforma de datos abiertos: Información sobre la cantidad de servidores civiles y sus ingresos promedio a nivel nacional periodo 2017-2021. https://www.datosabiertos.gob.pe/dataset/informaci%C3%B3n-sobre-la-cantidad-de-servidores-civiles-y-sus-ingresos-promedio-nivel-nacional
Autoridad Nacional del Servicio Civil (Servir) (2024). La mujer en el servicio civil peruano 2024. Autoridad Nacional del Servicio Civil (Servir).
Blume, I. (2023). Igualdad Salarial: Desarrollos actuales, perspectivas y debates. Laborem (27), 105-120.
Brock, G., Datta, S., Pihur, V. & Datta, S. (2008). clValid: An R Package for Cluster Validation. Journal of Statistical Software.
Chapman, P. C. (2000). CRISP-DM 1.0.
Congreso de la República. (15 de marzo de 2024). Archivo Digital de la Legislación del Perú. https://www.leyes.congreso.gob.pe/Documentos/2016_2021/ADLP/Normas_Legales/30709-LEY.pdf
Instituto Nacional de Estadística e Informática - INEI. (15 de marzo de 2024). Proyección población 2018-2022. https://www.gob.pe/institucion/inei/informes-publicaciones/3464927-peru-proyecciones-de-poblacion-total-segun-departamento-provincia-y-distrito-2018-2022
Instituto Nacional de Estadística e Informática - INEI. (2024, marzo 31). PBI por región. https://m.inei.gob.pe/estadisticas/indice-tematico/producto-bruto-interno-por-departamentos-9089/
Kassambara, A. (2017). Practical Guide to Cluster Analysis in R. STHDA.
Loayza Pacheco, L. (2019). Guía para igualdad. Igualdad salarial. Ministerio de Trabajo y Promoción del Empleo.
Organización Internacional del Trabajo (OIT). (2020). Panorama Laboral 2020. América Latina y el Caribe. OIT.
Organización Internacional del Trabajo (OIT). (2024). Panorama Laboral en América Latina y el Caribe 2024. Cerrar la brecha de género para impulsar la economía y la productividad en América Latina. OIT.
ONU Mujeres. (2023). ¿Qué es la brecha salarial? https://lac.unwomen.org/es/que-hacemos/empoderamiento-economico/epic/que-es-la-brecha-salarial
Soto, I. & Gamboa, J. (2021). Ciencia de Datos con R. Métodos estadísticos para la investigación experimental. Universidad Nacional Agraria La Molina.
The Royal Swedish Academy of Sciences. (15 de marzo de 2024a). Scientific background to the Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel 2023. https://www.nobelprize.org/uploads/2023/10/advanced-economicsciencesprize2023.pdf
The Royal Swedish Academy of Sciences. (15 de marzo de 2024b). History helps us understand gender differences in the labour market. https://www.nobelprize.org/uploads/2023/10/popular-economicsciencesprize2023.pdf
Urquidi, M. (2023). Brecha de ingresos laborales por género en América Latina y el Caribe: un análisis de componentes. BID.
Zumel, N. & Mount, J. (2020). Practical data science with R. Manning Publications.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Roberto León Leyva (Autor/a)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.